exIMUs: An Experimental Inertial Measurement Unit for Shock and Impact Detection in Sport Applications

نویسندگان

  • Ivan Minakov
  • Roberto Passerone
چکیده

Wearable technology for physical activity recognition has emerged as one of the fastest growing research fields in recent years. A great variety of body-worn motion capture and tracking systems have been designed for a wide range of applications including medicine, health care, well-being, and gaming. In this paper we present an experimental inertial measurement system for physical impact analysis in sport-science applications. The presented system is a small cordless wearable device intended to track athletes physical activity during intensive workout sessions. The main distinctive feature of the system is its capability to detect and measure a wide range of shock intensities typical for many active sports, including martial arts, baseball, football, hockey, etc. Tracking of the sport specific irregular and fast movements is another important aspect addressed in the presented experimental system. In this paper we present the hardware-software architecture of the system and discuss preliminary in-field experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy

Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...

متن کامل

Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications

Human body movement can be monitored through a wireless network composed of inertial sensors. This work presents the development of Wagyromag (Wireless Accelerometer, GYROscope and MAGnetometer), a wireless Inertial Measurement Unit (IMU) composed of a triaxial accelerometer, gyroscope and magnetometer. Communication is based on a 802.15.4 network. Furthermore, calibration, signal conditioning ...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

An Optical Measurement System to Measure Velocity and Provide Shock Wave Pressure Diagrams

This paper introduces an optical measurement system for shock wave characteristics. The system works by mountinga metal plate attached to spring mounts against the shock wavefront. This set is sealed and can plot the shock wave pressure diagram by measuring plate's displacement, radiation and changing the reflection of light during shock wave conflict, and converting these optical data to volta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015